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Abstract
We describe an analysis of the combined spatial

and temporal convergence of a compressible flow al-
gorithm. Unlike other analyses, in this study we
examine the space-dependent and time-dependent as-
pects together . This analysis includes the numerical
solution of a set of nonlinear equations that model
discretization error. The unknowns in these equations
are parameters, including the asymptotic convergence
rates, that provide metrics used to quantify the per-
formance of the software implementation of the algo-
rithm. These measures gauge the difference between
the computed and exact solutions. Restricted to a
smooth problem, the design accuracy of the algorithms
should be achieved. While we focus on the Euler
equations of gasdynamics in this note, the verification
analysis presented contains the elementary concepts in
sufficient detail to apply this technique to a variety of
different algorithms.

Introduction
In this study, we quantify both the spatial and

temporal convergence behavior simultaneously of an
algorithm for the two-dimensional Euler equations of
gasdynamics. Such an analysis falls under the rubric
of verification, which is the process of determining
whether a simulation code accurately represents the
code developers’ description of the model (e.g., equa-
tions, boundary conditions, etc.).1 The recognition
that verification analysis is a necessary and valuable
activity continues to increase among computational
fluid dynamics practitioners.2,3

Using computed results and a known solution, one
can estimate the effective convergence rates of a spe-
cific software implementation of a given algorithm and
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gauge those results relative to the design properties
of the algorithm. In the aerodynamics community,
such analyses are typically undertaken to evaluate the
performance of spatial integrators; analogous conver-
gence analysis for temporal integrators can also be
conducted. Our approach combines these two usually
separate activities into the same analysis framework.

To accomplish this task, we outline a procedure
in which a known solution together with a set of
computed results, obtained for a number of differ-
ent spatial and temporal discretizations, are employed
to determine the complete convergence properties of
the combined spatio-temporal algorithm. Such an ap-
proach is of particular interest for Lax-Wendroff-type
integration schemes, where the specific impact of ei-
ther the spatial or temporal integrators alone cannot
be easily deconvolved from computed results. Un-
like the more common spatial convergence analysis,
the combined spatial and temporal analysis leads to
a set of nonlinear equations that must be solved nu-
merically. The unknowns in this set of equations are
various parameters, including the asymptotic conver-
gence rates, that quantify the basic performance of the
software implementation of the algorithm.

Theoretical results for convergence properties of
algorithms for the Euler equations are most fre-
quently obtained for smooth problems. Therefore, we
present preliminary results for simultaneous spatio-
temporal convergence properties of two-dimensional
smooth problems involving linear fields of the equa-
tions. An obvious extension of this effort would include
verification analysis of smooth problems that involve
the nonlinear fields.4 The novel verification proce-
dure described herein can also be applied to problems
that develop discontinuous solutions (involving, e.g.,
shockwaves5), for which there exist some theoretical
convergence results.6

This paper continues with a brief description of the
general error ansatz comprised of both spatial and
temporal discretization errors. The solution of the re-
stricted convergence ansatz for a single independent
variable is then discussed, followed by a description
of the solution of the coupled space-time case. To
demonstrate this approach, the combined convergence
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analysis for a simple advection problem is presented.
A conclusion summarizes the contents and results of
this paper.

General Error Ansatz
We consider the partial differential equation

N (U) = 0, where N is a nonlinear operator con-
sisting of spatial and temporal partial derivatives and
U is a real-valued solution. We are concerned with
quantifying the accuracy of numerical solutions to this
equation. To characterize the combined space and
time dependence of the error in the solution, we ana-
lyze the average per-timestep convergence properties
by proposing the following error ansatz:

||ξ∗ − ξl
i||/N∆tl

= E0 + A (∆xi)
p + B (∆tl)

q

+ C (∆xi)
r (∆tl)

s

+ o
(
(∆xi)

p
, (∆tl)

q
, (∆xi)

r (∆tl)
s
)
, (1)

where ξ is some functional of the solution (e.g, one
component of U), ξ∗ is the exact value, ξl

i is the value
computed on the grid of spatial zone size ∆xi with
timestep ∆tl, || · || is a norm that maps its argument
to the non-negative real numbers,7 N∆tl

is the number
of time cycles taken to obtain the solution at the final
time, E0 is the zeroth-order error, A is the spatial
convergence coefficient, p is the spatial convergence
rate, B is the temporal convergence coefficient, q is
the temporal convergence rate, C is the spatio-temporal
convergence coefficient, and r+s is the spatio-temporal
convergence rate.

The relation in Eq. 1 averages out the position-
to-position, cycle-to-cyle dependence of the computed
results on ∆x and ∆t. In this expression, the solution
norm, which is typically a discrete approximation to
some integral of its argument, can be interpreted as a
spatial averaging operator; that is, the norm quanti-
fies some mean measure of the spatial behavior of its
argument. The ratio of this quantity with the number
of computational cycles is effectively a temporal aver-
aging operator; in analogy with the spatial norm, this
operation produces a mean per-timestep measure.

We make two additional assumptions: (i) we assume
that the zeroth-order error is negligible, i.e.,

| E0 | � |A (∆xi)
p |, | B (∆tl)

q |, | C (∆xi)
r (∆tl)

s |;
(2)

and (ii) we presume that we can evaluate a priori the
exact solution ξ∗ at any spatial position at a specified
time.

PDE Solver Discretization Errors

Features of the numerical method used to convert
continuous PDEs into a set of discrete equations affect
the nature of the discretization error associated with
the computational solution. For example, numerical
solution methods may produce either independent or

interrelated space and time discretization errors, as
modeled in the error ansatz. Two different methods
may have different convergence rates or, alternatively,
the same convergence rates but different absolute er-
rors. Additionally, the overall efficiency may vary
significantly between two schemes that have compa-
rable convergence rates.8

Modern high-resolution numerical schemes for hy-
perbolic conservation laws9,10 may not retain strict
separation of spatial and temporal discretizations.
Therefore, for such methods the interaction of the
spatial and temporal discretization errors may oc-
cur. Consequently, examination of combined space
and time convergence analysis provides the most ac-
cute insight into the performance of, e.g., certain com-
pressible flow algorithms for ideal gasdynamics.

As suggested by this observation, the selection of a
restricted or a combined verification approach should
be based on the functional relationships contained
in the underlying numerical method being analyzed.
Combined verification is indicated when the errors as-
sociated with the spatial and temporal discretizations
are mathematically coupled in the numerical method
being used to solve the underlying equations. Re-
stricted verification analysis, on the other hand, is
appropriate when the spatial and temporal discretiza-
tions in the numerical method are mathematically in-
dependent. A combined convergence analysis could
be employed in this case; however, such an approach
presents an unnecessarily complicated methodology
for characterizing independent discretization errors.

Restricted Convergence Analysis

There are several special cases of Eq. 1, depending
upon the relative magnitude of the terms in this equa-
tion. If the spatial error dominates the temporal error,
i.e., if

| A (∆xi)
p | � |B (∆tl)

q |, | C (∆xi)
r (∆tl)

s | , (3)

then a pure spatial convergence analysis can be con-
ducted. Alternatively, if the temporal error dominates
the spatial error, i.e., if

| B (∆tl)
q | � |A (∆xi)

p |, | C (∆xi)
r (∆tl)

s | , (4)

then a pure temporal convergence analysis can be con-
ducted.

In either of these cases, the technique by which
to determine the convergence characteristics (i.e., the
values of the parameters A, B, p, and q) is straight-
forward; by way of example, we consider the one-
dimensional spatial convergence case (the temporal
convergence case is similar). In this case, we sup-
press the temporal index l, subsume the division by
the number of timesteps into the norm, and obtain
the following relation:

||ξ∗ − ξi|| = A (∆xi)
p + · · · . (5)
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For the solution on a “coarse” grid, denoted with the
subscript c, ∆xc ≡ ∆x, and Eq. 5 implies

||ξ∗ − ξc|| = A (∆x)p + · · · . (6)

Consider now the computed solution on a “fine” grid
with cell size ∆xf such that ∆xc/∆xf = ∆x/∆xf =
σ > 1, i.e., ∆xf = ∆xc/σ = ∆x/σ < ∆x. For this
solution, Eq. 5 implies

||ξ∗ − ξf || = σ−p A (∆x)p + · · · . (7)

Equations 6 and 7 form a system of two equations
in the two unknowns A and p. This system can be
solved explicitly for these quantities:

p ≡ [ log(||ξ∗ − ξc||) − log(||ξ∗ − ξf ||) ] / log σ ,

A ≡ ( ||ξ∗ − ξc|| ) / (∆x)p
.

(8)
The convergence rate p and convergence coefficient
A constitute metrics that gauge the code’s conver-
gence properties. For numerical methods with known
convergence properties, these values can be used to
develop evidence that the solution algorithm has been
properly implemented in the software.

Combined Convergence Analysis

The general error ansatz in Eq. 1 contains a total of
seven unknowns: A, p, B, q, C, r, and s, following
the assumption in Eq. 2. Unlike the simplified case of
the previous section, in this case there is no general
closed-form solution for these parameters. Therefore,
to solve for these quantities we require seven inde-
pendent equations. To do so, we obtain computed
solutions at the same final time with the following
seven combinations of spatial and temporal zoning:

(1) : {∆x ,∆t} ,
(2) : {∆x/σ ,∆t} ,
(3) : {∆x/σ2,∆t} ,
(4) : {∆x ,∆t/τ} ,
(5) : {∆x ,∆t/τ2} ,
(6) : {∆x/σ ,∆t/τ} ,
(7) : {∆x/σ ,∆t/τ2} ,

(9)

where σ > 1 is the ratio of the spatial grid sizes, and
τ > 1 is the ratio of the temporal grid sizes. This set
of zonings is neither unique nor demonstrably optimal
for obtaining solutions for the parameters in Eq. 1. It
does, however, provide a sufficient set of independent
information with which to obtain solutions for the un-
knowns in this equation.

The set of computed solutions on these space-time
grids satisfies the following equalities at the (identical)

final time:

0 = f1 = −||ξ∗ − ξ1||/Nc + A (∆xc)
p

+ B (∆tc)
q + C (∆xc)

r (∆tc)
s
,

0 = f2 = −||ξ∗ − ξ2||/Nc + A (∆xm)p

+ B (∆tc)
q + C (∆xm)r (∆tc)

s
,

0 = f3 = −||ξ∗ − ξ3||/Nc + A (∆xf )p

+ B (∆tc)
q + C (∆xf )r (∆tc)

s
,

0 = f4 = −||ξ∗ − ξ4||/Nm + A (∆xc)
p

+ B (∆tm)q + C (∆xc)
r (∆tm)s

,
0 = f5 = −||ξ∗ − ξ5||/Nf + A (∆xc)

p

+ B (∆tf )q + C (∆xc)
r (∆tf )s

,
0 = f6 = −||ξ∗ − ξ6||/Nm + A (∆xm)p

+ B (∆tm)q + C (∆xm)r (∆tm)s
,

0 = f7 = −||ξ∗ − ξ7||/Nf + A (∆xm)p

+ B (∆tf )q + C (∆xm)r (∆tf )s
.

(10)
In these expressions, ∆xc ≡ ∆x is the coarse spatial
grid size, ∆xm ≡ ∆x/σ is the medium spatial grid
size, and ∆xf ≡ ∆x/σ2 is the fine spatial grid size;
similarly, ∆tc ≡ ∆t is the coarse timestep, ∆tm ≡
∆t/τ is the medium timestep, and ∆tf ≡ ∆t/τ2 is
the fine timestep. Also, Nc, Nm, and Nf represent
the number of time cycles involved in computing the
solutions with the coarse, medium, and fine timesteps,
respectively.

Equation 10 can be written as f(a) = 0, where
the elements of f are indicated above and a ≡
[a1, . . . , a7]

� ≡ [A, p,B, q, C, r, s]�. To obtain solutions
to this set of nonlinear equations, we use a modified
line-search-based Newton’s method.11 It is a straight-
forward exercise to derive closed-form expressions for
the elements of the corresponding Jacobian J , with
elements Ji,j ≡ ∂fi/∂aj , the inverse of which is typi-
cally evaluated numerically in Newton’s method-based
routines.

To obtain solutions to Eq. 10, one must obtain the
calculated solutions of the underlying PDEs at the
fixed final time using the spatial and temporal grids
specified. An initial guess must be assigned to the ar-
ray of unknowns a; this initial guess must be within
the domain of convergence of the iterative solution of
Eq. 10. The former is a matter of computer resources,
whereas the latter requires some a priori knowledge
of the algorithm of interest. On possible choice for
initial guess consists of the algorithm’s theoretical con-
vergence rates together with, say, estimates of the
convergence coefficients from a purely spatial conver-
gence analysis (as previously discussed).

Convergence Analysis Requirements

Restricted (i.e., space- or time-only) and combined
(i.e., space and time together) convergence analyses
are further distinguished by their requirements. One
must be mindful that, in general, the only measurable
discretization error is the total discretization error,
which includes both spatial and temporal contribu-
tions. Combined convergence analysis involves the
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solution of the single ansatz equation that accounts for
this situation. A series of simulations for such a study
requires a set of numerical calculations using space and
time discretizations that are independent, e.g., as de-
scribed in the previous section. In contrast, a complete
restricted convergence analysis requires two separate
convergence studies, i.e., one each for space and time
independently. In this case, the separation of the two
sources of independent discretization errors (i.e., from
the spatial and temporal discretizations) can be prob-
lematic, due to the possibly unknown magnitudes of
the “neglected” component. Combined convergence
analysis circumvents such uncertainties inherent to
separate convergence analyses.

The Euler Equations of Gasdynamics
The Euler equations summarize the conservation of

mass, momentum, and energy for a compressible fluid.
For a single inviscid, compressible fluid, these equa-
tions in two-dimensional Cartesian coordinates are:

∂ρ
∂t + ∂(ρu)

∂x + ∂(ρv)
∂y = 0 ,

∂(ρu)
∂t +

∂(ρu2+p)
∂x + ∂(ρuv)

∂y = 0 ,

∂(ρv)
∂t + ∂(ρuv)

∂x +
∂(ρv2+p)

∂y = 0 ,

∂(ρE)
∂t +

∂[ρu(E+ p
ρ )]

∂x +
∂[ρv(E+ p

ρ )]
∂y = 0 ,

(11)

where ρ is the mass density, (u, v) are the components
of the velocity vector in Cartesian coordinates (x, y),
t is the time, E = e + 1

2 (u2 + v2) is the specific total
energy, e is the specific internal energy (SIE), and p =
p(ρ, e) is the pressure.

To obtain numerical solutions, these continuum
equations are approximated on a grid that is discrete in
both space and time. Specifically, we consider a fixed
Eulerian grid onto which Eq. 11 is discretized. The cor-
responding solution of the discretized form of Eq. 11
is indicated as U l

i,j , where U ≡ [ρ, ρu, ρv, ρE]� is the
array of conserved variables and U l

i,j corresponds to
U(xi, yj ; tl), the solution at position (xi, yj) and time
tl. We assume a uniform and equal spatial grid with
∆x = ∆y and uniform and equal timesteps ∆t.

The algorithm we consider uses Lax-Wendroff
time differencing (a Richymyer-type predictor-
corrector9,12) together with a Godunov-type method
(a high-resolution piecewise linear method13,14).
Consequently, the temporal dependence is interwoven
with the spatial dependence through self-similar
solutions to local Riemann problems. Therefore, com-
bined verification analysis, capturing both spatial-
and temporal-dependencies, is indicated.

Combined Convergence Results
Our preliminary results for this technique are based

on the evaluation of a smooth problem, i.e., one that
possesses smooth initial conditions and that is allowed
to evolve to a final time prior to the development of any

discontinuities. One way to obtain an exact solution
for verification purposes would be to use the Method of
Manufactured Solutions.15–17 Instead, we use known
solutions of the Euler equations; our approach obviates
the need to deal with extraneous source terms in the
equations and possible modifications of the solution al-
gorithm. The numerical solutions that we obtain with
different spatial and temporal meshes are compared
with the exact solution at identical final times. The
convergence properties of the coded algorithm are then
inferred following the procedure outlined above.

Example Problem

The two-dimensional, planar geometry initial con-
ditions for this problem consist of a sinusoidal dis-
tribution of density with initially constant and uni-
form pressure, thermodynamically consistent specific
internal energy (SIE), and uniform non-zero velocity
(u0, v0). The equation of state is chosen to be a poly-
tropic gas with adiabatic exponent γ = 1.4. With pe-
riodic boundary conditions, this configuration advects
the sinusoidal density and SIE distributions, which re-
main unperturbed, through the computational mesh.
If we write the initial conditions as f(x, y), then the
solution at any time t is given by f(x−u0 t, y− v0 t).
The domain of interest is assigned to be the square
of unit dimension centered at the origin in Cartesian
geometry, i.e., {(x, y) : −1/2 ≤ x ≤ 1/2 and − 1/2 ≤
y ≤ 1/2}. The initial conditions for this problem are
given in Table 1.

One severe limitation of this problem is that it tests
only the linear fields in the governing equations. Al-
ternate test problems that exercise the nonlinear fields
of Eq. 11 include the smooth simple wave problem
proposed by Cabot4 and nonsmooth 1-D shock tube
problems,5 both of which have exact solutions.

Calculations of the problem considered herein were
carried out on uniform grids consisting of 32 × 32,
64 × 64, 128 × 128, and 256 × 256 zones. Timesteps
of 1/1600, 1/3200, 1/6400, 1/12800 were used; these
timesteps are well below the CFL limit for this set of
calculations. Thus, both the subsequent spatial and
temporal zone sizes used in computing the convergence
properties were a factor of two smaller, i.e., σ = τ = 2
in the nomenclature used earlier. This choice of σ and
τ , i.e., of halving the spatial grid size and timestep,
was made for convenience only; as discussed, e.g., by
Roache,2 the factors σ and τ are arbitrary posi-
tive real numbers, provided the calculated solutions
of the underlying equations remain within the range
of asymptotic convergence of the numerical method.

It must be emphasized that the solution values must
be compared at identical locations in space at exactly
the same time. Our experience, consistent with that
suggested by Roache,2 is that convergence analysis
proves to be exquisitely sensitive to minor discrepan-
cies in either the code or the procedure (such as slight
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2-D Sinusoidal Density Advection Problem Initial Conditions
γ ρ p e u v

1.4 2 + sin 2πx sin 2πy 1.0 2.5/ (2 + sin 2πx sin 2πy) 1.0 1.0

Table 1 Initial values of the adiabatic exponent γ, nondimensional density ρ, pressure p, SIE e, x-velocity
u, and y-velocity v for the 2-D sinusoidal density advection problem.

differences in the final simulation time of calculations
being compared). Interpolation of solutions provides
values at identical spatial locations and the choice of
fixed timesteps allows solutions to be obtained at the
identical final time, t = 0.1.

Demonstration Results

For the problem described in the previous section,
preliminary results, based on the suite of calculations
conducted on 32 × 32, 64 × 64, and 128 × 128 grids,
are presented in Table 2. The corresponding results
based on 64 × 64, 128 × 128, and 256 × 256 grids are
given in Table 3. As shown in these tables, the spatial,
temporal, and combined spatio-temporal convergence
rates (i.e., p, q, and r + s) are each approximately two
in all cases. These results are in good agreement with
the design characteristics of both the spatial and tem-
poral integrators of the code, which are all nominally
second order. This comparison of computed conver-
gence rates to their theoretical values is axiomatic
in verification because convergence rates are problem
independent. These quantities arise through the con-
version of continuum PDEs into discrete equations,
with both (i.e., continuum and discrete) possessing
solutions for a range of problem setup (i.e., various
combinations of initial and boundary conditions).

Tables 2 and 3 also show that the convergence coef-
ficients, i.e., A, B, and C, are comparable for the com-
pressible flow algorithm used on this problem. This
result indicates that each term in the discretization
error model is approximately equally important for
the simple linear problem considered. Moreover, the
comparability of the convergence coefficients suggests
that the discretization error model in Eq. 1 is consis-
tent with the software implementation of the numerical
method. In particular, these results indicate that the
mixed error term may be necessary to properly char-
acterize the discretization error generated by certain
modern flow algorithms.

This examination of convergence coefficients is an
important component of this study. Such evaluations
are typically not used to gauge the proper implemen-
tation of numerical PDE solvers for the simple reason
that the convergence coefficients are problem depen-
dent (unlike the convergence rates); in particular, the
convergence coefficients are proportional to some av-
erage measure of the solution derivatives. Using com-
puted convergence coefficients and rates, one could
determinine if a particular term in the error ansatz
dominates the total discretzation error in a subsequent

simulation (of the same problem) by combining these
convergence parameters with the specific grid-spacing
and time-steps of that simulation. Given results such
as these for a combined convergence analysis, subse-
quent restricted (i.e., space-only or time-only) verifica-
tion studies are possible under certain constraints on
the grid-spacing and timestep.18 Restricted verifica-
tion analysis, however, would fail to capture the mixed
time- and space-dependent term of the discretization
error model in Eq. 1.

Conclusions
In this study we have performed convergence analy-

sis simultaneously in both space and time on a smooth
problem for a Godunov scheme using Lax-Wendroff
time integration. The fundamental assumption of this
analysis (Eq. 1) is that the mean per-cycle error in the
computed solution varies as a polynomial in the com-
putational cell size and computational timestep, with
the exponents in this expression being the convergence
rates. Unlike the evaluation of convergence properties
for standard spatial convergence analysis, for which,
e.g., there is a closed-form expression for the conver-
gence rate, combined space-time analysis requires the
numerical solution of a set of nonlinear equations. Ob-
taining solutions to this set of equations, therefore, is
more involved than directly obtaining the convergence
results in the typical space-only or time-only conver-
gence cases.

An application of this analysis is provided using a
smooth advection problem. The results of our study
demonstrate that the underlying advection algorithm
is indeed second order in both space and time, in-
cluding the “mixed” space-and-time discretization er-
ror rate r + s, at all resolutions considered. These
results are in good agreement with the design char-
acteristics of the numerical method. This combined
spatio-temporal analysis provides concrete evidence
supporting the claim of a verified implementation of
the numerical algorithms for a smooth problem involv-
ing the linear fields of the underlying equations.

It remains to examine this method for problems that
exercise the nonlinear fields of the Euler equations.
Additionally, it is of interest to examine all the roots
of the system of nonlinear equations that govern the
convergence properties.
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